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Abstract Global optimization problems involving the minimization of a product of convex
functions on a convex set are addressed in this paper. Elements of convex analysis are used to
obtain a suitable representation of the convex multiplicative problem in the outcome space,
where its global solution is reduced to the solution of a sequence of quasiconcave minimi-
zations on polytopes. Computational experiments illustrate the performance of the global
optimization algorithm proposed.
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1 Introduction

This paper is concerned with multiplicative problems having a product of convex functions
as the objective function to be minimized on a convex set. Microeconomics and geometric
design are some of the areas where convex multiplicative programming finds interesting
applications [13]. Another important source of multiplicative problems are certain convex
multiobjective problems in which the product of the individual objectives plays the role of a
surrogate objective function [27]. Correspondencies between multiplicative and multiobjec-
tive programming have been pointed out in the literature [15,2].

Multiplicative programming is reviewed in [13]. A traditional manipulation is to project
the convex multiplicative problem in the outcome space, that is, in the real space where the
vector of convex functions which constitute the multiplicative objective has its image.
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A number of multiplicative programming approaches for solving the problem in the
outcome space have been proposed. In [25] the multiplicative problem is reduced to the
minimization of a quasiconcave objective over a convex set. The resulting problem is solved
by outer approximation. Outer approximation is also employed in [17], where an equivalent
concave minimization problem is obtained through a suitable transformation, and then solved
by a cutting plane algorithm. The method is generalized in [14] to problems in which the
objective function consists of a sum of products of two convex functions. The transformation
proposed in [17] is extended in [11], where the multiplicative problem is rewritten as a special
quasiconcave minimization problem, whose global optimum is obtained by a conical branch-
and-bound algorithm. Another equivalent quasiconcave minimization problem is derived in
[1]. Branching, bounding and outer approximation by polytopes are combined to solve the
multiplicative problem in the outcome space. In [3] a cutting plane algorithm developed for
concave minimization [10] is adapted to the formulation of linear multiplicative problems in
the outcome space.

More recently, a number of branch-and-bound techniques have been proposed for affine
and generalized affine multiplicative programming. In [16], the affine multiplicative problem
is reduced to a separable concave minimization problem, and then solved by a branch-and-
bound algorithm specially designed to reduce the number of branching operations. Affine
and generalized affine multiplicative problems are treated in [23] by using a combination of
a lower bounding procedure proposed by the authors in [22] and a new branching scheme.

Despite its inherent computational complexity, relatively few heuristic algorithms for mul-
tiplicative programming have been reported in the literature [2,19]. Special algorithms for
some classes of multiplicative problems have been proposed [4]. In a more theoretical frame-
work, in [24] a complete duality theory for a class of quasiconcave multiplicative programs
is derived by using conjugate function theory and generalized geometric programming.

The method proposed in this paper is inspired in elements of Convex Analysis [21],
employed in projection techniques as the Generalized Benders Decomposition introduced in
[9], and whose principles have been progressively extended to global nonconvex optimiza-
tion problems [7,26]. By combining results of convex analysis and convex multiobjective
programming we obtain a representation of the feasible region of the problem in the outcome
space as a semi-infinite inequality system. The problem is then solved by relaxation: the solu-
tion of a master problem is sent to a maximin subproblem, which tests it with respect to its
ε-feasibility. If not ε-feasible, the solution of the maximin subproblem generates an improved
outer approximation of the problem. The procedure eventually converges to an ε-optimum
solution after finitely many iterations. Solving the master problem involves a quasiconcave
minimization over a polytope, carried out by an adequate vertex enumeration procedure.
The maximin subproblem involves only the coordinated solution of convex programming
problems.

The resulting global optimization algorithm is proved to be substantially more efficient
than other global algorithms for convex multiplicative programming based on outer approx-
imations. Its efficiency derives mainly from the use of deepest cuts, which control the gen-
eration of cutting planes and, as a result, the growth of vertices to be considered while
solving relaxed multiplicative problems in the outcome space. Numerical experiences show,
for example, that the algorithm can solve multiplicative problems involving products of, at
least, ten linear functions. Applications of exact methods to problems involving products of
more than five linear functions have not been reported in the literature.

The paper is organized as follows. In Sect. 2 we formulate the convex multiplicative
problem and analyse its connection with convex multiobjective programming. In Sect. 3 an
outcome space approach based on elements of convex analysis is proposed. Convergence and
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implementation issues are discussed. Computational experiments, analyses and comparisons
with competing algorithms available in the literature are discussed in Sect. 4. Conclusions
are presented in Sect. 5.

Notation . The set of all n-dimensional real vectors is represented as R
n . The sets of all

nonnegative and positive real vectors are denoted as R
n+ and R

n++, respectively. Inequalities
are meant to be componentwise: given x, y ∈ R

n , then x ≥ y (x − y ∈ R
n+) implies xi ≥

yi , i = 1, 2, . . . , n. Accordingly, x > y (x − y ∈ R
n++) implies xi > yi , i = 1, 2, . . . , n.

The standard inner product and the Euclidean norm in R
n are denoted as 〈x, y〉 and ‖x‖,

respectively. The subset of boundary points of � ⊂ R
n is denoted as ∂�. If f : R

n → R
m

is defined on �, then f (�) := { f (x) : x ∈ �}. The symbol := means equal by definition.

2 Preliminary results

Consider the convex multiplicative problem

(PM )

∣
∣
∣
∣
∣
∣
∣

minimize v(x) =
m

∏

i=1

fi (x)

subject to g j (x) ≤ 0, j = 1, 2, . . . , p,

where fi : R
n → R (i = 1, 2, . . . , m) and g j : R

n → R ( j = 1, 2, . . . , p) are convex
functions. As usual we assume that

� := {x ∈ R
n : g j (x) ≤ 0, j = 1, 2, . . . , p} (1)

is a nonempty, compact (convex) set, and that each fi is positive over �. The objective
function in (PM ) can be written as the composition v(x) = u( f (x)), where u : R

m → R,
defined by

u(y) :=
m

∏

i=1

yi , (2)

may be viewed as a particular aggregating function for the problem of minimizing the vector
valued objective f := ( f1, f2, . . . , fm), f : R

n → R
m , on � [27]. While v is generally

nonconvex on �, u is quasiconcave on R
m++ [10]. The positiveness of f on � implies that u

is quasiconcave on

Y := f (�), (3)

the outcome space associated with problem (PM ).
A solution x� ∈ � is an efficient solution of the multiplicative (multiobjective) prob-

lem (PM ) if there exists no other x ∈ � such that f (x) ≤ f (x�) and f (x) 	= f (x�). We
denote the set of all efficient solutions of (PM ) as effi(�). Since u is increasing in each yi

(i = 1, 2, . . . , m) on the outcome space Y , the following fundamental property holds.

Theorem 1 Let x� ∈ � be an optimal solution of the convex multiobjective (multiplicative)
problem (PM ). Then x� ∈ effi(�).

Proof See [8]. �
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It is known from the multiobjective programming literature [27] that if x ∈ � is an effi-
cient solution of (PM ) then there exists w ∈ R

m+ such that x is also an optimal solution of
the convex programming problem

(PW )

∣
∣
∣
∣

minimize 〈w, f (x)〉
subject to x ∈ �.

Conversely, let x(w) be any optimal solution of (PW ). Then x(w) is efficient if w ∈ R
m++.

Defining

W :=
{

w ∈ R
m+ :

m
∑

i=1

wi = 1

}

, (4)

the whole set effi(�) can be generated by solving (PW ) over W , being also possible to
characterize the optimal solution of (PM ) in terms of problem (PW ).

Theorem 2 Let x� be an optimal solution of (PM ). Then any optimal solution of (PW ) for
w = w�, where

w�
i =

∏

j 	=i

f j (x�) > 0, i = 1, 2, . . . , m, (5)

is also optimal to (PM ).

Proof See [15]. �

When m = 2 the optimal weight w∗ can be efficiently located by the parametric algorithm
proposed in [12].

Theorem 2 is an existence theorem: the optimal weighting vector w� depends on the
(unknown) optimal solution of (PM ). A method for obtaining w� as the limit of the sequence
generated by an algorithm derived with basis on convex analysis arguments is proposed in
this paper.

3 The outcome space approach

The outcome space formulation of (PM ) is

(PY )

∣
∣
∣
∣
∣
∣
∣

minimize u(y) =
m

∏

i=1

yi

subject to y ∈ Y,

where Y is defined by (3). Outcome space formulations have been successfully employed
in convex multiplicative programming. A different manipulation of (PY ) which combines
elements of convex analysis and multiobjective optimization in the outcome space [6] is
proposed in this section. Preliminarily, it is worth noting that the continuity of f and the
compactness of � imply the compactness of Y . The convexity of � also entails the connect-
edness by arcs of Y , but not its convexity.

The set of all efficient solutions in the outcome space is given by effi(Y) = f (effi(�)). It
is readily seen that if y ∈ effi(Y) then y ∈ ∂Y . Central to the global algorithm proposed in
this paper is the following result.
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Theorem 3 Define F := Y + R
m+. Then

i) F is a convex set;
ii) effi(F) = effi(Y).

Proof See [27]. �

Since F is a convex set, effi(F) = effi(Y) and effi(F) ⊂ ∂F , it follows that F admits a
supporting half-space at each efficient solution of (PY ).

We observe that F can be explicitly represented as

F := {y ∈ R
m : f (x) ≤ y for some x ∈ �}, (6)

as any y ∈ F is a sum of elements of Y and R
m+. (We redefine the result of the sum as y,

for convenience.) The importance of Theorem 3 relies on the fact that now it is possible
to obtain an equivalent outcome space formulation with a convex closed (but unbounded)
feasible region:

(PF )

∣
∣
∣
∣

minimize u(y)

subject to y ∈ F .

Theorem 4 Let y� ∈ F be an optimal solution of (PF ). Then

i) y� ∈ effi(Y);
ii) y� is an optimal solution of (PY ).

Proof If y� ∈ F solves (PF ), there exists a x� ∈ � such that y� = f (x�) ∈ Y . Otherwise,
if y� ≥ f (x�) and y� 	= f (x�), then y0 = f (x�) would contradict the optimality of y�,
because y0 ∈ F and u(y0) < u(y�). Clearly, y� ∈ effi(Y), and since Y ⊂ F , we conclude
that y� is also an optimal solution of (PY ). �

3.1 Feasibility problem

Differently from (PY ), the feasible region of (PF ) is amenable to representation through
convex analysis results. Although Theorem 5 below holds in a more general context [18], an
alternative proof is provided in order to illustrate the role played by convex analysis in this
paper.

Theorem 5 y ∈ F if and only if y satisfies the semi-infinite inequality system

min
x∈�

〈w, f (x) − y〉 ≤ 0 for all w ∈ W. (7)

In addition, every linear inequality in (7) defines a supporting half-space for F .

Proof Suppose that ȳ ∈ F . Then there exists x̄ ∈ � such that f (x̄) ≤ ȳ. It follows that

〈w, f (x̄) − ȳ〉 ≤ 0 for all w ∈ W,

and (7) holds for y = ȳ. Now suppose that ȳ 	∈ F . By the Separation Theorem [21] there
exists w ∈ R

m\{0} and t ∈ R such that 〈w, ȳ〉 < t and 〈w, y〉 ≥ t for all y ∈ F , which
implies w ∈ R

m+, because, if wi < 0 for some i , the inequality 〈w, y〉 ≥ t could be violated
by selecting a sufficiently large y ∈ F ⊂ R

m++. Then we can assume w ∈ W , and knowing
that 〈w, f (x)〉 ≥ t for all x ∈ �, it follows that 〈w, f (x) − ȳ〉 > 0 for all x ∈ �. Since �

is compact, we conclude that minx∈�〈w, f (x) − ȳ〉 > 0 for some w ∈ W .
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Finally, for any w ∈ W ,

H := {y ∈ R
m : 〈w, y〉 ≥ 〈w, f (x(w))〉}

is a supporting half-space for F , because y ∈ F implies y ∈ H and H contacts F at
y = f (x(w)). �

In practice, we implement the following corollary of Theorem 5: y ∈ F if and only if
θ(y) ≤ 0, where

θ(y) := max
w∈W

φy(w) (8)

and

φy(w) := min
x∈�

〈w, f (x) − y〉. (9)

Theorem 6 Let φy and θ be defined by (9) and (8), respectively. Then

i) Given y ∈ R
m, the function φy is concave on W;

ii) f (x(w)) − y is a supergradient of φy at w ∈ W;
iii) The function θ is convex on R

m.

Proof

i) For all w1, w2 ∈ W and all α ∈ [0, 1],
φy(αw1 + (1 − α)w2) = min

x∈�
〈αw1 + (1 − α)w2, f (x) − y〉

= min
x∈�

{〈αw1, f (x) − y〉 + 〈(1 − α)w2, f (x) − y〉}

≥ α min
x∈�

〈w1, f (x) − y〉 + (1 − α) min
x∈�

〈w2, f (x) − y〉
= αφy(w

1) + (1 − α)φy(w
2).

i i) From the definition of φy ,

φy(w) ≤ 〈w, f (x(w0)) − y〉 for all w,w0 ∈ W

and

φy(w
0) = 〈w0, f (x(w0)) − y〉 for all w0 ∈ W.

Subtracting the last two expressions, we obtain

φy(w) ≤ φy(w
0) + 〈 f (x(w0)) − y, w − w0〉 (10)

for all w ∈ W , meaning that f (x(w0)) − y is a supergradient of φy at w0 ∈ W .

i i i) Since the minimum on the right-hand side of (9) does not depend on y, the following
property holds: For all y1, y2 ∈ R

m and all α ∈ [0, 1],
φαy1+(1−α)y2(w) = αφy1(w) + (1 − α)φy2(w).
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Therefore, for all y1, y2 ∈ R
m and all α ∈ [0, 1],

θ(αy1 + (1 − α)y2) = max
w∈W

φαy1+(1−α)y2(w)

= max
w∈W

{

αφy1(w) + (1 − α)φy2(w)
}

≤ α max
w∈W

φy1(w) + (1 − α) max
w∈W

φy2(w)

= αθ(y1) + (1 − α)θ(y2),

and θ is convex on R
m . The convexity of θ implies its continuity on R

m , a property
to be used in Sect. 3.3, where the convergence of the global optimization algorithm
proposed is demonstrated. �

At each point w ∈ W , a supergradient f (x(w)) − y determines a supporting hyperplane
to the hypograph of φy , which enables us to build piecewise linear approximations to φy . A
l-th approximation to φy would be

φl
y(w) = min

1≤i≤l
{〈w, f (x(wi )) − y〉}. (11)

The maximization of φy over W can be carried out by the outer approximation algorithm
discussed in [18] in the context of the solution of dual programming problems. Instead of
maximizing φy on W , as defined in (8), the maximization on W of progressively better
piecewise linear approximations φl

y of φy , given by (11), is considered. The problem of

maximizing φl
y on W is formulated as a linear programming problem in the algorithm below.

Algorithm A1

Step 0: Choose w1 ∈ W and set l := 1;
Step 1: Solve the convex programming problem

(PW )

∣
∣
∣
∣

minimize 〈wl , f (x)〉
subject to x ∈ �,

obtaining x(wl);

Step 2: Solve the linear programming problem in the variables w and σ

(PL )

∣
∣
∣
∣
∣
∣

maximize σ

subject to σ ≤ 〈w, f (x(wi )) − y〉, i = 1, 2, . . . , l,
w ∈ W, σ ∈ R,

obtaining σ l+1, wl+1 and φy(w
l+1). If σ l+1 − φy(w

l+1) < ε1, where ε1 > 0 is a
small tolerance, declare θ(y) = σ l+1 and stop. Otherwise, set l := l + 1 and return
to Step 1.

3.2 Master problem

Define an initial polytope P0 := {y ∈ R
m : 0 < y ≤ y ≤ y} containing the optimal set of

problem (PF ). (The problem of finding suitable vectors y and y is discussed in Sect. 3.3.)
The previous assumptions about the multiplicative problem imply that the minimum of u on
P0 is attained at y0 = y. By using Algorithm A1 we will generally conclude that θ(y0) > 0,

that is, y0 	∈ F . At convergence, Algorithm A1 provides the positive half-space

H0+ := {y ∈ R
m : 〈w0, y〉 ≥ 〈w0, f (x(w0))〉}, (12)
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which supports F at y = f (x(w0)) (Theorem 5). Viewing F as the semi-infinite inequality
system (7), the vector y0 violates mostly H0+, since w0 maximizes the left-hand side of (7).
We then say that the hyperplane associated with H0+ produces a deepest cut in P0, in the
sense that the intersection H0+ ∩ P0 removes as much as possible of P0. This procedure
recalls the cutting plane approach in linear semi-infinite programming.

Proceeding similarly, the problem to be solved at an arbitrary iteration k would be

(PPk )

∣
∣
∣
∣

minimize u(y)

subject to y ∈ Pk .

Given that u is a continuous quasiconcave function on R
m++ and Pk is a compact polytopic

subset of R
m++, the global minimum of (PPk ) is attained at a vertex of Pk [10]. The number of

vertices of Pk is linked to m. When m is small, which is often true in practice [17], problem
(PPk ) can be solved by using vertex enumeration procedures. The procedure adopted in this
paper is the following. Initially, P0 has 2m vertices and the solution of (PP0 ) is obviously
the vertex y0 = y. At an arbitrary iteration k, the vertices of

Pk := Pk ∩ Hk+, (13)

denoted as V(Pk), are determined by using the Adjacency List Algorithm [5]. Our imple-
mentation of this algorithm can overcome degeneracy problems, discussed in details in [10].
Then any optimal solution of

∣
∣
∣
∣

minimize u(y)

subject to y ∈ V(Pk)
(14)

globally solves (PPk ).

3.3 Global algorithm

In this section we formalize a global optimization algorithm for solving convex multiplicative
programming problems and discuss some of its characteristics.

Algorithm A2

Step 0: Find P0 and set k := 0;
Step 1: Solve the multiplicative problem

(PPk )

∣
∣
∣
∣

minimize u(y)

subject to y ∈ Pk,

obtaining yk ;

Step 2: Find θ(yk) = 〈wk, f (x(wk)) − yk〉 by using algorithm A1. If θ(yk) < ε2, where
ε2 > 0 is a small tolerance, stop: yk and x(wk) are ε2-optimal solutions of (PF )
and (PM ), respectively. Otherwise, define
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Pk+1 := {y ∈ Pk : 〈wk, y〉 ≥ 〈wk, f (x(wk))〉},
set k := k + 1 and return to Step 1.

Assuming that a global minimum is always determined at Step 1 of Algorithm A2, the
infinite convergence of Algorithm A2 to a global minimum of (PF ) (and hence, of (PM ))
can be established as follows.

Theorem 7 Any limit point y� of the sequence {yk} generated by algorithm A2 is an optimal
solution of the convex multiplicative problem (PF ).

Proof Note that problem (PPk ) always has an optimal solution. At any iteration k, the last
linear inequality incorporated into Pk is

〈wk, y − f (xk)〉 ≥ 0, (15)

and can be rewritten as

〈wk, y − yk〉 ≥ 〈wk, f (xk) − yk〉
= θ(yk).

At any subsequent iteration p > k of algorithm A2, we must have

θ(yk) ≤ 〈wk, y p − yk〉
≤ ‖wk‖ ‖y p − yk‖
≤ ‖y p − yk‖,

because ‖wk‖ ≤ 1 for all wk ∈ W . As k → ∞, we obtain yk → y�, y p → y� and the
continuity of θ at y� yields θ(y�) ≤ 0. Therefore, y� ∈ F , that is, y� is a feasible solution of
(PF ). Denoting by u� the optimal value of (PF ), and knowing that Pk contains the optimal
set of (PF ) for all k = 0, 1, 2, . . ., we conclude that u� ≥ u(y�). Consequently, y� is an
optimal solution of (PF ). �

The algorithm initiates with a polytope P0 = {y ∈ R
m : 0 < y ≤ y ≤ y} containing the

optimal set of PF . Defining y as

y
i
:= min

x∈�
fi (x), i = 1, 2, . . . , m, (16)

at the cost of solving m additional convex programming problems, has contributed to speed-
ing up the convergence of the algorithm. The upper bound y can be also defined as the
individual maxima of the convex functions f1, f2, …, fm on �, which demands the solution
of m convex maximization problems. In practice, the characteristics of the particular multipli-
cative problem at hand usually suggest a vector y large enough to guarantee that all efficient
solutions of (PM ) will be contained in P0. Analytical approaches for confining the optimal
set of convex multiplicative programming problems to hyper-rectangles are discussed in [1]
and [17].

Most of the computational effort required by algorithm A2 is concentrated at Step 2, where
θ(yk) is computed by algorithm A1. While the linear programming minimizations (Step 2
of A1) are relatively inexpensive, the nonlinear ones (Step 1 of A1) demand some effort,
although their convexity enable the use of very efficient convex programming algorithms.
The codification and preparation efforts related to the approach proposed (Algorithms A1 and
A2) seem to be small compared with other approaches for convex multiplicative programming
available in the literature.
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4 Computational experiments

Consider the illustrative example discussed in [1], where an alternative algorithm for convex
multiplicative problems combining branch and bound and outer approximation techniques
is proposed. The data involved are: n = m = p = 2,

f1(x) = (x1 − 2)2 + 1, f2(x) = (x2 − 4)2 + 1,

g1(x) = 25x2
1 + 4x2

2 − 100, g2(x) = x1 + 2x2 − 4.

Letting y = (1, 1), y = (18, 38) (as in [1]), we obtained the results reported in Table 1.
With a convergence criterion equivalent to ε2 = 0.025, the algorithm proposed in [1]

converged after 8 iterations. Algorithm A2 converged after only 5 iterations to the ε2-global
solution x4 = (1.9009, 1.0495) satisfying ε2 < 0.01. The optimal multiplicative function
value was f1(x4) f2(x4) = 9.8008. As expected, x4 is an efficient solution for the associ-
ated convex bi-objective problem, as both components of w4 are positive. Indeed, all the
intermediate solutions generated by algorithm A2 are efficient.

The main objective of this section is to compare the computational performance of the
proposed algorithm with those exhibited by the alternative convex multiplivative program-
ming algorithms proposed in [17], where an equivalent concave minimization problem is
obtained through a suitable transformation and solved by a cutting plane algorithm, and in
[23], where global optimization algorithms for affine and generalized affine multiplicative
problems based on branch and bound schemes are developed and extensively compared with
other global optimization algorithms. All the algorithms were evaluated with basis on linear
multiplicative programming problems of the following form:

(PM L )

∣
∣
∣
∣
∣
∣
∣

minimize
m

∏

i=1

〈ci , x〉
subject to Ax ≥ b, x ∈ R

n+,

where A ∈ R
p×n , b ∈ R

p and ci ∈ R
n are constant matrices with entries pseudo-randomly

generated in the interval [0, 100].
The proposed algorithm was coded in MATLAB (V. 6.1)/Optimization Toolbox (V. 2.1.1)

[20]; a personal computer—Pentium IV, 2.4 GHz, 512 MB RAM—was used for obtaining
numerical results. The tolerances for convergence of the proposed algorithm were fixed at
ε1 = 10−4 (Algorithm A1) and ε2 = 10−5 (Algorithm A2), the latter being the same adopted
by the alternative algorithms proposed in [17] and [23].

The performance of the proposed algorithm was quantified in terms of the following
parameters (total values): W, number of problems (PW ) solved, C, number of cutting planes

Table 1 Convergence of algorithm A2

k yk wk x(wk ) 	(yk )

0 (1.0000,1.0000) (0.4074,0.5926) (0.0000,2.0000) 4.0000

1 (1.0000,7.7500) (0.6585,0.3415) (1.3547,1.3226) 0.4170

2 (1.0000,8.9711) (0.8129,0.1871) (1.7014,1.1493) 0.1016

3 (1.0000,9.5139) (0.8907,0.1093) (1.8509,1.0745) 0.0247

4 (1.0000,9.7394) (0.9451,0.0549) (1.9009,1.0495) 0.0074
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needed for convergence, and V, number of vertices generated in the process. The parameter
W was introduced in order to establish approximate comparisons with results of [17]. Ten
problems for selected combinations of n (number of variables) and p (number of constraints)
were solved. Average and standard deviation values (in parenthesis) of C, W and V are pre-
sented. The symbol � in Tables 2, 3, 4, 5 and 6 means that the required information is not
provided in [17] or [23].

Table 2 reports the results obtained with the algorithms proposed in [17]) and in this paper
for produts of four linear functions and selected values of n and p. The average values of W
obtained with the proposed algorithm are smaller and exhibit slower growth. More impor-
tantly, the average values of V obtained with the proposed algorithm are much smaller than

Table 2 Average (standard deviation) values of W, C and V for m = 4

(n, p) Algorithm of [17] Proposed

W V W C V

(30,20) 62.8 (12.66) 733.2 (207.12) 42.7 (5.56) 8.7 (1.25) 39.2 (8.90)

(40,50) 77.9 (21.60) 983.7 (365.13) 49.3 (5.56) 9.1 (2.07) 38.3 (8.92)

(60,50) 81.9 (11.41) 1060.6 (199.37) 54.6 (7.24) 9.5 (1.51) 39.6 (8.25)

(80,60) 86.8 (15.09) 1153.8 (258.10) 52.9 (6.45) 8.6 (0.96) 39.5 (7.55)

(100,80) 100.1 (17.84) 1386.0 (311.34) 56.4 (7.47) 8.9 (1.44) 42.1 (8.55)

(100,100) 101.5(24.62) 1414.7 (422.30) 56.7 (8.56) 8.8 (1.62) 43.8 (12.53)

(120,100) 98.5 (13.68) 1370.6 (251.71) 63.3 (8.99) 10.0 (2.66) 45.7 (6.79)

(120,120) 99.8 (18.65) 1385.3 (327.60) 62.7 (7.87) 10.4 (2.91) 47.5 (12.74)

(200,200) � � 70.5 (5.36) 10.4 (2.71) 51.7 (8.69)

Table 3 Average (standard deviation) computing times for m = 4

n 30 40 60 80 100 100 120 120 200

p 20 50 50 60 80 100 100 120 200

Algorithm of [17] 14.21 49.05 95.05 155.10 330.55 524.49 617.51 1154.83 �

(10.46) (46.44) (32.49) (66.54) (101.87) (210.27) (141.65) (381.51) �

Algorithm of [23] 2.6 10.4 13.6 28.1 56.1 61.0 86.1 94.2 396.3

(0.8) (4.0) (5.1) (6.3) (17.2) (21.1) (35.9) (23.3) (189.4)

Proposed 1.55 4.95 11.33 20.57 35.95 38.54 61.29 63.86 257.39

(0.25) (0.84) (1.69) (2.95) (4.70) (7.83) (8.51) (8.42) (57.46)

Table 4 Growths of computing times requirements for m = 4

r40,50 r60,50 r80,60 r100,80 r100,100 r120,100 r120,120 r200,200

Algorithm of [17] 3.5 6.7 10.9 23.3 36.9 43.5 81.3 �

Algorithm of [23] 4.0 5.2 10.8 21.6 23.5 33.1 36.2 152.4

Proposed 3.2 7.3 13.3 23.2 24.9 39.5 41.2 166.1
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Table 5 Average (standard deviation) computing times (n = 30, p = 20)

m Algorithm of [17] Algorithm of [23] Proposed

2 0.46 (0.05) 0.3 (0.1) 0.56 (0.12)

3 1.27 (0.25) 0.8 (0.3) 1.57 (0.85)

4 14.21 (10.26) 2.6 (0.8) 2.97 (1.73)

5 1170.36 (950.53) 6.0 (2.0) 3.41 (1.30)

6 � � 9.81 (8.29)

7 � � 28.81 (19.49)

8 � � 84.39 (25.82)

9 � � 488.58 (186.15)

10 � � 2370.15 (1057.05)

Table 6 Growths of computing times requirements (n = 30, p = 20)

r3 r4 r5 r6 r7 r8 r9 r10

Algorithm of [17] 2.8 30.9 2544.3 � � � � �

Algorithm of [23] 2.7 8.7 20.0 � � � � �

Proposed 2.8 5.3 6.1 17.5 51.4 150.7 872.5 4232.4

those obtained with the algorithm of [17]. The main reason is that, while in [17] V is an
increasing function of W, according to the method proposed in this paper, V increases with
C, the number of (deepest) cuts generated by Algorithm A2, which is substantially smaller
than W. Another reason is the use of the Adjacency List Algorithm for vertex enumeration.

The instances of problem (PM L ) reported in Table 2 are also solved in [23]. Table 3
furnishes the average and standard deviation times (in sec) obtained with the algorithms pro-
posed in [17,23] and in the present paper. Since the results of Table 3 were obtained by using
different computational resources, the following relative performance measure suggested in
[23] is adopted:

ri, j := average time for n = i and p = j

average time for n = 30 and p = 20
.

The growths of the computing times requirements of the algorithms as measured by
ri, j , (i, j) = (40, 50), (60, 50), (80, 60), (100, 80), (100, 100), (120, 100), (120, 120),
(200, 200), are presented in Table 4. The growth of computational requirements of the pro-
posed algorithm is slightly faster than that exhibited by the algorithm of [23], which in turn is
much slower than that presented by the algorithm of [17]. Additional computational experi-
ences indicate that similar conclusions to those drawn from Tables 2, 3 and 4 can be reached
when any other fixed value of m is considered.

The critical parameter for evaluating the performance of multiplicative programming algo-
rithms is the number of functions (m) that compose the overall objective. Table 5 furnishes
the average and standard deviation times (in sec) of the algorithms proposed in [17,23] and
in the present paper as a function of m and (n, p) = (30, 20). Results for products of more
than five linear functions are not reported in [17] and [23].
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Table 6 reports the growths of the computing times requirements of the algorithms as
measured by ri , where

ri := average time for m = i

average time for m = 2
, i = 3, 4, . . . , 10.

As m increases, the growth of the computational requirements of the proposed algorithm
is significantly slower than that exhibited by the algorithm of [23], which in turn is much
slower than that presented by the algorithm of [17].

As a final remark, it is worth mentioning that as long as the multiplicative function is a
product of convex functions, problem (PW ) (Algorithm A1) will be a convex programming
problem, for which very efficient solvers are available. This characteristic of problem (PW )
has been taken into account while implementing Algorithm A1.

5 Conclusions

A global optimization approach for convex multiplicative programming inspired in elements
of convex analysis has been proposed in this paper. Some properties related to the concept of
efficient solution in multiobjective programming have been used to derive progressively bet-
ter outer approximations of the problem in the outcome space. Convex analysis results have
been employed to decompose the convex multiplicative problem into a master, quasiconcave
problem in the outcome space, globally solved by vertex enumeration, and a maximin sub-
problem, which tests the global solution generated by the master problem with respect to its
feasibility.

Numerical experiments have shown that the computational effort invested in generating
deepest cuts in the outcome space through the solution of maximin subproblems is compen-
sated by a faster convergence of the algorithm. The use of deepest cuts also limits the growth
of vertices in the master problem and enables its effective solution by vertex enumeration.
An Adjacency List Algorithm has been implemented to accomplish this task.

The algorithms derived are easily programmed by using standard optimization packages.
Further properties of the approach proposed as well as its extension to more general multi-
plicative and fractional global optimization problems are under current investigation.
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